

A DISTRIBUTED PROGNOSTIC HEALTH

MANAGEMENT ARCHITECTURE

Bhaskar Saha
*
, Sankalita Saha

*
 and Kai Goebel

#

*
Mission Critical Technologies (NASA Ames Research Center)

#
NASA Ames Research Center

Moffett Field, CA 94035

{bhaskar.saha, sankalita.saha-1, kai.goebel}@nasa.gov

Abstract: This paper introduces a generic distributed prognostic health management

(PHM) architecture with specific application to the electrical power systems domain.

Current state-of-the-art PHM systems are mostly centralized in nature, where all the

processing is reliant on a single processor. This can lead to loss of functionality in case of

a crash of the central processor or monitor. Furthermore, with increases in the volume of

sensor data as well as the complexity of algorithms, traditional centralized systems

become unsuitable for successful deployment, and efficient distributed architectures are

required. A distributed architecture though, is not effective unless there is an algorithmic

framework to take advantage of its unique abilities. The health management paradigm

envisaged here incorporates a heterogeneous set of system components monitored by a

varied suite of sensors and a particle filtering (PF) framework that has the power and the

flexibility to adapt to the different diagnostic and prognostic needs. Both the diagnostic

and prognostic tasks are formulated as a particle filtering problem in order to explicitly

represent and manage uncertainties; however, typically the complexity of the prognostic

routine is higher than the computational power of one computational element (CE).

Individual CEs run diagnostic routines until the system variable being monitored crosses

beyond a nominal threshold, upon which it coordinates with other networked CEs to run

the prognostic routine in a distributed fashion. Implementation results from a network of

distributed embedded devices monitoring a prototypical aircraft electrical power system

are presented, where the CEs are Sun Microsystems Small Programmable Object

Technology (SPOT) devices.

Key Words: Distributed system health management architecture; diagnostics;

prognostics; embedded systems; remaining useful life; particle filters; distributed

resampling.

I. INTRODUCTION

Distributed diagnostics and prognostics is the next step in the evolution of health

management systems as expectations of health update frequency, system coverage and

prediction accuracy increase. The most common architecture for health management

systems – due to ease of development – is centralized i.e., a central processing device

collects data from sensors and processes them, while executing various diagnostic and

prognostic algorithms. However, such a system architecture, where all or most of the

processing is reliant on a single processor, is prone to various problems; the most serious

being vulnerability to complete loss of functionality in case of a crash of the central

computing element. Furthermore, with increase in amount of sensor data as well as the

complexity of algorithms, traditional centralized systems become unsuitable for

successful deployment and efficient distributed architectures are required.

A distributed architecture though, is not effective unless there is an algorithmic

framework to take advantage of its unique abilities. The health management paradigm

envisaged here incorporates a heterogeneous set of system components monitored by a

varied suite of sensors and a particle filtering (PF) framework that has the power and the

flexibility to adapt to the different diagnostic and prognostic needs. The application

domain for this research is an experimental setup simulating a prototypical aircraft

electrical power system. The system components under test include power electronic

devices and lithium-ion batteries. Sun Microsystems Small Programmable Object

Technology (SPOT) devices are used for embedded sensing as well as computing. Each

system component is monitored by a single Sun SPOT device that takes voltage, current

and temperature measurements as appropriate and runs the diagnostic routine on the

collected data. Once a fault is detected the SPOT device in question switches over to the

prognostic routine where it enlists the help of other available SPOT devices to set up a

distributed wireless network in order to share the prognostic computational load.

Both the diagnostic and prognostic tasks are formulated as a particle filtering problem in

order to explicitly represent and manage the uncertainties inherent to the PHM domain.

Such uncertainties could result from various sources like insufficient system model

fidelity, sensor noise or unanticipated operating conditions. The diagnostic system model

is a simple low order formulation that allows the limited computation power of a single

SPOT device to track the measured variable indicative of component health and trigger

the prognostic routine when certain predetermined thresholds are crossed. The prognostic

model is more complex in order to handle the increased uncertainty of health prediction

and hence load sharing over the distributed network is required to obtain real-time results.

The cooperating SPOT devices multi-task to carry out individual diagnostic duties along

with distributed prognostic tasks and maximize the overall health management system

efficiency. Thus, the overall system involves complex run-time scheduling and decision-

making. The results discuss the prediction accuracy and precision of the prognostic

routine and the computational performance gains of the distributed architecture over

classical centralized schemes.

II. BACKGROUND

Research into systems health management has traditionally been spearheaded by the

manufacturing, power generation and military systems community. Rotating machinery

were the first implementation platforms for these technologies, since downtime or

breakdown incurred significant costs, both in terms of economic viability and resource

availability. Forays into the world of electrical and electronic devices are more recent.

Even so, most of the body of work available addresses the issue of diagnostics – fault

detection, identification and isolation. The field of prognostics is still very much nascent,

although with the advent of the Condition-based Maintenance (CBM) paradigm, the

emphasis on failure prediction and prevention has increased.

Early efforts in machinery diagnostics were mostly data-driven techniques applied to

vibration data [1], [2]. Integrated diagnostics and prognostics approaches have emerged

in recent years. In [3] the authors discuss such a methodology using statistical prognostic

models. They also emphasize the need for a physics-of-failure based approach to improve

the reliability of prognostics. A reasoning engine for distributed multi-algorithm

diagnostics and prognostics is presented in [4]. Distributed data mining tools like DAME

[5] and BROADEN [6] have also been developed for aircraft engine health management

applications.

Looking at the health management problem from the systems perspective, the authors in

[7] present a distributed prognostics architecture where tasks, like identifying the

different system modules and determining where they fit into a given system using

prognostics, are distributed at the algorithm level. A distributed network of smart sensor

elements integrated using a knowledge-driven environment is presented in [8], which

participates in a hierarchy of health determination at sensor, process, and system levels. A

hardware multi-cellular sensing and communication network (a smart “skin”) for health

management of “ageless” aerospace vehicles (AAVs) is presented in [9]. The objective is

to detect and self-heal from impacts caused by projectiles like micro-meteoroids or space

debris.

From the algorithms perspective, some prognostic techniques – such as particle filters –

have been investigated from a distributed implementation context. Three different

distributed implementations for particle filtering are presented in [10]. A parallel particle

filter implementation on a shared-memory multiprocessor cluster is discussed in [11].

The issue of resampling in distributed particle filter architectures has been discussed in

[12]. Distributed particle filters for sensor networks [13] and tracking applications [14]

have also been explored in recent times. Communication issues are most often the highest

contributor to resource management costs for generic distributed networks. Specifically,

for wireless networks communication overhead can be higher by orders of magnitude as

compared to other factors. As a mitigation strategy, an approximate dynamic

programming approach that integrates the value of information and the cost of

transmitting data over a rolling time horizon is presented in [15]. However, the above

technique is specific to the context of object tracking with a distributed sensor network

and may not be easily extended to other domains. In [16] the authors investigate the role

of network topology in improving communication overheads. The problem of minimizing

communication in general distributed systems is considered in a discrete-event formalism

in [17], where the system is modeled as a finite-state automaton.

From the literature review presented above, it can be inferred that there are several

challenges to designing an efficient distributed health management architecture. It must

be flexible enough to be able to monitor a variety of subsystems using heterogeneous

implementation platforms while balancing the trade-offs among computational

performance, resource requirements and communication overheads. The following

sections describe a distributed PHM architecture that addresses these issues while using

particle filters as the underlying algorithm. A subset of this work concerning only the

distributed prognostics aspect was presented at the International Conference on

Prognostics and Health Management 2008 (PHM 2008) [18].

III. DISTRIBUTED PHM ARCHITECTURE
At the heart of the distributed PHM architecture is a network of smart sensor devices.

These devices monitor the health of various subsystems or modules i.e., they perform

diagnostics operations and trigger prognostics operations based on user defined

thresholds and rules. An example of such a distributed prognostics system is shown in

Figure 1. The sensor devices which we call computing elements (CEs) consist of a sensor

or a set of sensors and a communication device i.e., a wireless transreceiver or wired

communication capabilities besides an embedded processing element. In this paper we

focus on wirelessly connected devices for enhanced flexibility. However, for many

systems, wired connections may be preferred in order to overcome communication

overheads associated with wireless systems.

Figure 1 – Overview of distributed prognostics system architecture. Note that all the CEs

may not have wireless connectivity. (Adapted from Figure 1 in [18]).

There are two main operating modes for a CE: diagnostics and prognostics [18]. A CE

runs in the default mode of diagnostics where it monitors a given sub-system or

component through a low weight diagnostic algorithm. During this monitoring if a CE

detects a critical condition, it raises a flag. Depending on the current state (i.e.,

availability of resources) it either switches to prognostics mode or informs the base

station of the prognostic task. Thus, in the prognostics mode it is not necessary that all

CEs collaborate; some of them may lack enough computing power to support the

additional new task. Note that the diagnostics operations continue in the prognostics

mode. To ensure that a participating CE can support such multi-tasking efficiently the

prognostics algorithms need to be distributed efficiently.

• All CEs running

Diagnostic routines

• CE reports fault

• Prognostics mode triggered

• Base Station sets up

Prognostics network
• Participating CEscontinue
to run Diagnostics

• Fault reporting CE runs Prognostics

• Participating CEs run Diagnostics & Prognostics
• Remaining CEs continue to run Diagnostics

M
A

IN
T

E
N

A
N

C
E

 A
C

T
IO

N

F
A

U
L

T
 P

R
O

G
R

E
S

S
IO

N

Figure 2 – Flow diagram for diagnostics and prognostics operations in the distributed

architecture.

In many cases the sensor capabilities of the CEs may not be utilized, i.e., they could act

as monitors for the rest of the system – schedule tasks, detect failures and initiate
recovery, provide access to resources such as an external database etc. These CEs are

specially designated as base stations. The base station is also, typically, connected to a

more power computing resource such as a laptop which aids in collection and storage of

system data.

Figure 2 shows, in detail, the typical execution flow in our health management

architecture. As mentioned earlier, each CE monitors different components or subsystems

such as battery health, actuator faults, health of electronic components and so on. It can

also be responsible for diagnostic monitoring of a sub-system comprising of multiple

components. In most cases the raw data collected is refined using diagnostics algorithms

and only a summary is reported to the base station. But, in many cases, when the CE does

not have enough computing power – for example in order to support heavy sampling rate

of data collection – it can periodically send packets of raw data which may be used for

offline analysis. Such a case is illustrated in our implemented architecture.

The base station monitors all the remaining CEs and coordinates tasks. The base station

also maintains information regarding CE resource availability. Note that during

prognostics, it is not necessary that the base station will coordinate all the tasks and

another local leader/server may be chosen. The CEs involved in the prognostics operation

would perform more efficiently if they are physically near to each other in a wireless

environment and hence it is imperative that the base station is physically near to the rest

of the CEs as well. Thus, in case the base station is far away from the collaborating CEs,

a different leader is selected.

Implemented Architecture: In the system considered in this paper, two free ranging

CEs (CE1 and CE2) are involved in addition to the base station, which also performs

diagnostics on battery health data from an offline source. This scenario reflects the case

when a base station has to aid some other CE in computation and illustrates the heavy

multi-tasking involved in such a health management architecture. After startup of the

system, during initialization, the base station communicates with remote CEs to gather

information regarding available resources. Individual diagnostics routines are initiated by

all the devices: CE1 monitors temperature of an IGBT, CE2 monitors temperature of a set

of Lithium ion batteries and the base station runs offline diagnostics for battery based on

current and voltage information. Further details of the diagnostic system are provided in

Section V.

In our system, prognostics is triggered by the base station after it detects an anomaly.

Based on resource information, it selects one of the CEs (say CE1) to collaborate in

prognostics on battery health data. It allocates task share to this CE and starts as well as

acts as a leader for the prognostics routine. CE1 now performs the prognostics sub-task in

addition to its diagnostics task. The remaining free ranging CE (CE2) continues its

diagnostic operation. The base station now performs only its share of the prognostics task

and scheduling and oversight of the prognostics task besides collection of diagnostics

data from the two CEs. Once the required maintenance has been performed and the

prognostics task is over the base station informs CE1, which then returns to its

diagnostics mode.

The Implementation Platform: The basic computational element of our implementation

platform is the Sun Microsystems SPOT device. A free range Sun SPOT is a small,

wireless, battery powered experimental platform built by stacking a Sun SPOT processor

board with a sensor board and battery as shown in Figure 3. The smaller base station Sun

SPOT consists of just the processor board in a plastic housing. In terms of processing

power, each Sun SPOT has a 180MHz 32-bit ARM920T core processor with 512K RAM

and 4M Flash. The Sun SPOTs communicate using radio channels. The processor board

has a 2.4GHz radio with an integrated antenna on the board. The radio is a TI CC2420

(formerly ChipCon) and is IEEE 802.15.4 compliant. Each processor board has a USB

interface (used to connect to a PC). Each free ranging SPOT runs off a 3.7 V

rechargeable, 750 mAh Lithium-ion battery, while power management is carried out

using a Atmel Atmega88 microcontroller. The base station SPOT does not have a battery,

instead drawing power via the USB connection to the host PC. In our implementation, the

free ranging SPOT act as CE while the SPOT base station acts as the default base station.

Figure 3 – Anatomy of a free ranging Sun SPOT device (courtesy of

www.sunspotworld.com).

IV. PARTICLE FILTERS
In terms of the software program running on the above described architecture, we focus

on a single-class of algorithms – particle filters. PF methods [19] are essentially Bayesian

learning schemes that model the state equations as a first order Markov process with the

outputs being conditionally independent. This has the advantage of making the next state

prediction dependent only on the current state and the current measurement, which

translates to lower memory and communication requirements than a Monte Carlo

approach. PF methods are capable of identifying model parameters simultaneously with

state estimation, thus tuning the system model to fault progression, making it superior to

Kalman filters for health management approaches.

Initialize PF Parameters

Propose Initial Population, <x0,w0>

Propagate Particles using State Model,

xk-1�xk

Update Weights, wk-1�wk
Measurement

zk

Weights degenerated?

Resample

Yes

No

Figure 4 – Particle filter flow chart.

PFs approximates the state probability distribution (pdf) with a set of particles, xk,

representing sampled values from the unknown state space, and their associated weights,

wk, denoting discrete probability masses. Figure 4 shows a simplified flow chart for the

PF algorithm. The particles are generated and recursively updated in two steps for each

iteration of the filter – an intermediate estimate is generated from a stochastic nonlinear

process model that describes the evolution in time of the system under analysis, which is

then updated using the likelihood of the current measurement, zk, to produce the posterior

state pdf. As the filter iterates and gets closer to the true state value, most of the particles

weight degenerate, i.e. become negligible. Then, in order to prevent wasting

computational resources on unimportant particles, resampling is carried out to generate a

new population of particles concentrated around the more important ones of the old

population. Details about this methodology are provided in [18].

V. DIAGNOSTICS

The diagnostic routine can be broken down into two parts – sensing and data analysis.

For the prototypical aircraft electrical power system (EPS) under consideration, we look

at a set of heterogeneous components, namely power semiconductor devices and

batteries. Power semiconductors like Insulated-Gate Bipolar Transistor (IGBT) form the

core of most electric power systems because of their high efficiency and fast switching

speeds. However, due to high thermal and electrical stresses IGBTs undergo accelerated

aging as compared to other electronic components that are part of the electrical power

system. On aircrafts, batteries are mostly used for starting the engines and supply back up

power to electrical loads (e.g. landing gear actuation, air conditioning etc.), while being

charged as the engines run. However, it is still important to know the state-of-charge

(SOC) and state-of-life (SOL) of the batteries for reliable operation, since their failure

could impair operation of crucial systems leading to catastrophic consequences.

Moreover, with the increasing role of electric UAVs in the future, batteries are going to

be even more critical to overall system functionality.

As mentioned before our set up consists of 2 SPOTs connected over a wireless network

to a base station that is linked to the host PC. One of these SPOTs monitors the

temperature of an IGBT as it undergoes repeated switching at elevated temperatures until

loss of functionality due to thermal runaway or latch-up. The other SPOT looks at the

temperature of a Lithium-ion rechargeable battery as it is repeatedly charged and

discharged until it reaches a predefined end-of-life (EOL) capacity threshold (30%

capacity fade). Figure 5 shows the temperature time series data collected by the SPOTs

from both the IGBT and the Lithium-ion battery. Since run-to-failure experiments with

these EPS components take considerable amount of time (more than the battery life of the

free ranging SPOTs), pre-recorded battery aging data is fed to the monitoring SPOTs

through the base station in order to show proof of concept of the integrated PF-based

diagnostics-prognostics framework. The state variables of interest are the battery

capacity, the electrolyte resistance (RE) and the charge transfer resistance (RCT) [18].

2.99 2.995 3 3.005 3.01 3.015

x 10
5

250

255

260

265

270

275

280

285

290

295

300

T
e
m
p
e
ra
tu
re
 (
 o
C
)

Time (secs)

0 50 100 150 200 250 300 350
26

26.5

27

27.5

28

28.5

29

29.5

30

T
e
m
p
e
ra
tu
re
 (
 o
C
)

Time (secs)

 (a) (b)

Figure 5 – Temperature data collected from EPS components (a) IGBT, and (b) battery.

For diagnostics on offline battery aging data, the base station runs a lightweight version

of the particle filter with only 20 particles, so as to fit within the computational and

memory resources of a single CE. Using a low number of particles somewhat diminishes

the ability of the PF to handle uncertainties, but since diagnostics is only concerned with

tracking performance (1 step ahead prediction), the PF output is acceptable, as shown in

Figure 6 (a) and (b). The tracking error for the internal impedance variables does not

exceed 1milliohm while that for capacity drops to 10 mAh within 3 iterations. The

diagnostic routine is run until the battery capacity as estimated by the base station crosses

the 5% fade threshold, shown in Figure 6 (b), after which the prognostic routine is

triggered. The state estimates at this trigger point serve as the starting population for the

prognostics PF algorithm.

0 10 20 30 40 50 60 70
0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

0.022

DIAGNOSTICS PROGNOSTICS

Time (weeks)

R
E
,
R
C
T
(o
h
m
s
)

Estimated R
E

Measured R
E

Estimated R
CT

Measured R
CT

0 10 20 30 40 50 60 70

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Diagnostic Threshold

DIAGNOSTICS PROGNOSTICS

Time (weeks)

C
a
p
a
c
it
y
 (
A
h
)

Estimated Capacity

Measured Capacity

(a) (b)

Figure 6 – PF state tracking for diagnostics and state prediction during prognostics from

32 weeks onward for - (a) internal impedances RE, RCT, and (b) battery capacity.

VI. PROGNOSTICS
For the prognostic routine we need to make long-term predictions over several weeks and

hence, we need more particles in the PF implementation to manage the uncertainty

bounds. However, when the number of particles is stepped up to 100, the computational

and memory resources available in a single CE is insufficient to handle the load. The

base station then communicates with one of the CEs requesting help to set up a

distributed computational network. These 2 nodes then execute the prognostic PF while

working with 50 particles each. The distributed architecture takes advantage of the fact

that there are no data dependencies during model-based particle propagation and the

weight updates. These portions of the PF algorithm as easily parallelized, while only the

resampling part is serial in nature. In our setup, the base station performs the resampling

and particle routing, as well as overall control. More details about the execution steps can

be found in [18].

Figure 6 (a) and (b) show the predicted trajectories of RE, RCT and battery capacity from

32 weeks onward. Although, by this point we have seen only half the life of the battery,

the predictions are fairly accurate due to the ability of the PF to adapt the system aging

model during the diagnostic routine. Furthermore, the PF does not simply provide the

mean prediction trajectories, but also the predicted state pdf. This distribution may be

compared against the EOL threshold (30% capacity fade, i.e. a battery capacity of 0.7

Ah) to generate the remaining useful life (RUL) pdf. Figure 7 shows how the PF

prognosis improves in both accuracy and precision (narrowness of the pdf) from 32

weeks to 48 weeks as more data is made available before prediction.

0 10 20 30 40 50 60 70
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
Particle Filter Prediction

Time (weeks)

C
/1
 c
a
p
a
c
it
y
 (
A
h
);

 R
U
L
 p
d
f
(b
ia
s
e
d
 b
y
 0
.7
)

P
re
d
ic
ti
o
n
 @

 3
2
 w
e
e
k
s

P
re
d
ic
ti
o
n
 @

 4
8
 w
e
e
k
s

Real data

RUL threshold

RUL pdfs

Figure 7 – Distributed PF prediction at 32 and 48 weeks.

VII. COMPUTATIONAL PERFORMANCE
The execution time profiles (averaged over multiple separate executions of the whole

system) for prediction after 32 weeks and prediction after 48 weeks are shown in Figure

8. An average was taken since the execution time varies – within a margin of 10-15 ms –

mainly based on the wireless communication time which is dependent on the distance

between the CEs. The comparison shows the significant decrease in execution time when

two CEs are used for prognostics, which is expected since the computation intensive load

is now distributed. The inclusion of diagnostics task adds a minor overhead to the

performance.

Execution Time Comparison for Prognostics only

0

10

20

30

40

50

60

32 weeks 48 weeks

Time of starting Prediction

E
x
e
c
u

ti
o

n
 t

im
e
 (

in
 s

e
c
s
)

1 SPOT

2 SPOT (no diagnostics)

2 SPOT (with diagnostics)

Figure 8 – Execution time comparison for health management system.

The memory usage of the CE1, CE2 and the base station are 29 KB, 28 KB and 25 KB

respectively. Note that the CEs i.e., remote SPOTs execute using a virtual machine which

contributes to additional memory use. The static program memory usage of one of the

SPOT devices is illustrated in Figure 9. The memory usage reflects that most of the

application memory is unused and further multi-tasking is possible thereby facilitating

the scope for design of more complex health management system.

Memory Usage for CE 1

System

Used

Unused

Figure 9 – Typical memory usage profile for a SPOT device.

VIII. CONCLUSION
This paper presents a distributed system health management architecture that handles

diagnostics as well as prognostics operations in a collaborative manner. It builds on

recent advances in smart sensor devices to distribute macro and micro level tasks, for

better performance and resource utilization. The distributed prognostics part was

highlighted in [18]. In this paper, a proof-of-concept demonstration of the architecture

with the diagnostics workload thoroughly integrated has been presented which resulted in

a heavily multi-tasking system. Experiments with monitoring a small heterogeneous set

of EPS components to evaluate the effects on performance and resource (memory)

utilization have been presented. Analysis of the results show that such a distributed

architecture results in a highly efficient system (low execution time and static memory

usage) that is capable of supporting complex functionalities like PF based diagnostics and

prognostics, while providing high throughput rate.

The main focus of this paper has been architectural issues. However, new algorithmic

modifications are also required to scale this system for real-time practical applications.

Such algorithm explorations, besides investigation of more complex systems, are

directions for future work. More analysis of architectural features such as communication

protocols, power management, sophisticated partitioning and scheduling of tasks etc. are

also important future research objectives.

REFERENCES

[1] R. H. Lyons, Machinery Noise and Diagnostics, Butterworth-Heinemann, 1987.

[2] M. F. Dimentberg, K. V. Frolov, and A. I. Menyailov, Vibroacoustical Diagnostics

for Machines and Structures, Research Studies Press Ltd., 1991.

[3] Kam W. Ng, “Integrated Diagnostics and Prognostics of Rotating Machinery”,

International Journal of Rotating Machinery, vol. 5, no. 1, pp. 35-40, 1999.

[4] B. H. Bennett, P. Bergstrom, G.D. Hadden, G. J. Vachtsevanos, and J. Van Dyke,

“Distributed Multi-Algorithm Diagnostics and Prognostics for US Navy Ships”, 2002

AAAI Spring Symposium, 2002.

[5] T. Jackson, J. Austin, M. Fletcher, and M. Jessop, “Delivering a Grid enabled

Distributed Aircraft Maintenance Environment (DAME)”, in Proceedings of EPSRC

AHM, Nottingham 2003.

[6] M. Fletcher, T. Jackson, M. Jessop, S. Klinger, B. Liang, J Austin, “The BROADEN

Distributed Tool, Service and Data Architecture”, in Proceedings of EPSRC AHM,

Nottingham 2006.

[7] M. Roemer, C. Byington, G. Kacprzynski and G. Vachtsevanos, “An Overview of

Selected Prognostic Technologies with Reference to an Integrated PHM

Architecture”, in Proc. of the First Intl. Forum on Integrated System Health

Engineering and Management in Aerospace, 2005.

[8] J. Schmalzel, F. Figueroa, J. Morris, S. Mandayam and R. Polikar, “An Architecture

for Intelligent Systems Based on Smart Sensors”, IEEE Transactions on

Instrumentation and Measurement, vol. 54, no. 4X, pp. 1612-1616, Aug 2007.

[9] M. Prokopenko, P. Wang, D. C. Price, P. Valencia, M. Foreman, A. J. Farmer, “Self-

organizing Hierarchies in Sensor and Communication Networks”. Artificial Life,

Special Issue on Dynamic Hierarchies, vol. 11, no. 4, pp. 407-426, 2005.

[10] A. S. Bashi, V. P. Jilkov, X. R. Li and H. Chen, “Distributed Implementations of

Particle Filters”, in Proc. of Sixth International Conference of Information Fusion,

2003, vol. 2, pp. 1164- 1171, 2003.

[11] S. Saha, C. Shen, C. Hsu, A. Veeraraghavan, G. Aggarwal, A. Sussman and S. S.

Bhattacharyya, “Model-based OpenMP Implementation of a 3D Facial Pose Tracking

System”, in Proc. of the Workshop on Parallel and Distributed Multimedia,

Columbus, Ohio, pp. 66-73, Aug 2006.

[12] M. Bolic, P. M. Djuric and S. Hong, “Resampling Algorithms and Architectures for

Distributed Particle Filters”, IEEE Transactions on Signal Processing, vol. 53, issue

7, pp. 2442- 2450, July 2005.

[13] M. Rosencrantz, G. Gordon and S. Thrun, “Decentralized Sensor Fusion with

Distributed Particle Filters”, in Proc. Conf. Uncertainty in Artificial Intelligence

Acapulco, Mexico, Aug 2003.

[14] X. Sheng, Y.-H. Hu and P. Ramanathan, “Distributed Particle Filter with GMM

Approximation for Multiple Targets Localization and Tracking in Wireless Sensor

Network”, in Fourth Intl. Symp. on Information Processing in Sensor Networks, pp.

181- 188, 2005.

[15] J. L. Williams, J. W. Fisher and A. S. Willsky, “Approximate Dynamic Programming

for Communication-Constrained Sensor Network Management”, IEEE Transactions

on Signal Processing, vol. 55, issue 8, pp. 4300-4311, Aug 2007.

[16] S. S. Iyengar, Q. Wu, and N. S. V. Rao, “Networking paradigm for distributed sensor

networks”, in Proc. of the Second IEEE International Workshop on Intelligent Data

Acquisition and Advanced Computing Systems: Technology and Applications, pp.

284-290, Sept. 8-10, 2003.

[17] W. Wang, S. Lafortune and F. Lin, “A Polynomial Algorithm for Minimizing

Communication in a Distributed Discrete Event System with a Central Station”, in

Proc. Of 45th IEEE Conference on Decision & Control, San Diego, CA, USA,

December 13-15, 2006.

[18] S. Saha, B. Saha, and K. Goebel, “Distributed Prognostics Using Wireless Embedded

Devices”, in Proc. of International Conference on Prognostics and Health

Management 2008 (PHM 2008), Oct 2008.

[19] S. Arulampalam, S. Maskell, N. J. Gordon and T. Clapp, “A Tutorial on Particle

Filters for On-line Non-linear/Non-Gaussian Bayesian Tracking”, IEEE Trans. on

Signal Processing, vol. 50, no. 2, pp. 174-188, 2002.

